
Introduction 
 This experiment studies the transfer of heat in a fin surrounded by air.  The 
fin is an aluminum rod surrounded by air, with the bottom of the rod at either a 
constant or oscillating temperature.  If there is a temperature difference between 
the rod and the surrounding air, or between different ends of the rod, then heat will 
flow from the hotter areas to the cooler ones.  This experiment studies the transfer 
of heat within the rod and between the rod and its surroundings.   

The three methods by which heat is transferred are conduction, convection, 
and radiation.  When solving for the heat profile of a fin, we assumed that 
conduction—the process by which thermal energy is transferred between adjacent 
molecules due to a temperature gradient—was the only method of heat transfer 
within the fin.  When heat is transferred by conduction, neighboring molecules 
vibrate against each other or transfer electrons to each other.  Because the metallic 
bonds in metals have free electrons, metals, such as aluminum, are good conductors 
of heat. 

Convection occurs when the movement of molecules transfers heat from one 
location to another.  Conduction therefore increases as the fluid motion increases 
and does not occur solids (which are not fluids).  When the temperature of the air 
surrounding the metal rod is different than the temperature of the rod, heat will be 
transferred through the surrounding air by convection.  

Radiation is the transfer of heat through electromagnetic waves, through 
empty space.  All objects radiate heat at a rate proportional to their emissivity.  
Because the emissivity of aluminum is very low, we assume that the heat 
transferred by radiation through the rod is negligible. 

This experiment studies the temperature profile of the rod under two 
different conditions.  First, we held the bottom of the rod at a constant temperature 
and studied the steady-state heat transfer through and from the rod.  Next, we 
applied a sinusoidal time varying temperature to the bottom of the rod, and studied 
the transient heat transfer through and from the rod.  By using dimensional analysis 
and analyzing our data, we were able to solve for the dimensionless constants of our 
experiment. 
 
Setup 
 This experiment builds on the thermal control experiment that we completed 
in the pervious lab.  We modified the thermoelectric cooler (TEC) setup and the 
LabVIEW code from the “Thermal Control via LabVIEW” experiment slightly for this 
experiment: 
 First, we plugged one end of a cylindrical rod into the TEC and left the other 
end in the air.  The rod is aluminum, with a 1.2 cm diameter.  We also added five 
additional thermistors and placed them along the length of the rod.  Each thermistor 
is held in place by a ring around the rod, and we used thermal glue to increase the 
thermal conduction between the rod and the thermistors.  We also left the one 
thermistor at the bottom of the rod, touching the TEC.  A block of insulation was 
placed around the TEC, so we did not use the data from the bottom thermistor in 
any of our calculations. 



 Next, we modified our LabVIEW code to include temperature data from all 
six thermistors.  Temperature-versus-time data from all six thermistors is plotted 
on the same graph, and the data is automatically saved as a text file. 
 Lastly, we changed our LabVIEW program so that the base temperature can 
oscillate sinusoidal over time about a set temperature T0.  The user can set T0, as 
well as the oscillation amplitude and period.  If a constant base temperature is 
desired, the amplitude can be set to zero. 

Our code (block diagram) and the user interface (front panel) are shown 
below, in Figures (1a) and (1b), respectively. 

 

 
Figure (1a): LabVIEW code: Block Diagram 

 



 
Figure (1b): LabVIEW program: Front Panel 

 
Theory 
 This experiment studies the heat profile of a long cylinder whose base is set 
at a constant or oscillatory temperature while the rest of the rod is exposed only to 
room-temperature air.  The heat is transferred along the axis of the rod by 
conduction and from the sides of the rod into the air by convection.  Fourier’s Law of 
Heat Conduction describes the convective heat transfer, while Newton’s Law of 
Cooling describes the convective heat transfer.  The First Law of Thermodynamics is 
a statement of conservation of energy.  By combining these three laws, we are able 
to calculate the temperature profile along the rod. 
 

First, I will discuss the First Law of Thermodynamics, which states that the 
increase of a closed system’s internal energy is equal to the sum of the energy added 
by heating the system and the work done on the system by its surroundings.  In 
other words, energy can change from one form to another, but it must always be 
conserved.  In Equation (1), a statement of the First Law of Thermodynamics, W is 
the transfer rate of work done by the system on its surroundings, U is the internal 
energy of the system, t is time, and Q is the heat transfer rate. 
 

(1) dU/dt = Q - W 
 

Assuming that no work is done on the system: 
 
(2) Q = dU/dt = mc dT/dt 



 
The outermost parts of Equation (2) are a well-know thermodynamics equation, 

which relates the heat flow into or out of an object to the temperature change dT of 
the object.  The mass m has a specific heat capacity c, a constant that depends on the 
material of the object.  
 

Second, I will examine Fourier’s Law, which states that when heat is transferred 
by conduction, the rate of heat transfer is proportional and opposite in sign to the 
temperature gradient.  Equation (3) is Fourier’s Law, where q is the heat flux, or the 
heat transfer rate per unit area; k is the proportionality constant; and ▽T is the 
temperature gradient.  The negative sign says that heat will always flow from hotter 
temperatures to cooler temperatures. 
 

(3) q = -k ∇T 
 

If the heat transfer is one dimensional, Equation (3) is simplified into Equation 
(4), where x is the direction in which the heat is flowing. 
 

(4) q = -k dT/dx 
 
By definition of flux, the heat flux, q, can also be expressed in terms of the rate of 

heat transfer, Q.  The relationship is Q = q A, where A is the surface area of the object. 
 
Lastly, Newton’s Law of Cooling describes convective heat transfer.  Newton 

discovered that when a cooler fluid is flowing past a hotter object, the rate at which 
the object’s temperature changes is proportional to the difference between the 
object’s temperature and the fluid’s temperature.  From Equation (2), it is obvious 
that the rate at which tan object’s temperature changes is also proportional to rate 
of heat transfer.  If the object’s temperature is held constant over time (due to an 
energy source that heats the object steadily as it cools), then Newton’s Law takes the 
form of Equation (5): 
 

(5) q = h (T - T∞) 
 

In Equation (5), h is the constant of proportionality, called the heat transfer 
coefficient, and varies greatly for different situations.  Because h varies so greatly, it 
is not truly a constant along the surface of the aluminum rod.  For the purposes of 
this lab, we will assume that h is the average value of the heat transfer coefficient 
over the entire surface of cooling object.  T∞ is the temperature of the fluid far away 
from the object, in our case room temperature.   
 
 As promised, the First Law of Thermodynamics, Fourier’s Law of Heat 
Convection, and Newton’s Law of Cooling by convection together lay the basis for 
the heat transfer equation for a fin.  A fin is an extension of a surface.  For example, 



the aluminum rod with one end touching the TEC is one type of fin.  As the fin’s 
surface area increases, the convective heat transfer also increases.   
 

As mentioned above, within the rod, conduction is the process by which heat 
is transferred.  We will assume that the conduction within the rod occurs only in the 
x-direction, so that the temperature along the length of the rod is only a function of x 
and t, and not of y or z, the directions perpendicular to the length of the rod.  We will 
first study the case of steady state conduction, when the TEC is set to a constant 
temperature.  After, we will discuss the transient case, when the TEC is set to an 
oscillatory temperature. 

 
Figure (2) shows the setup of the fin.  T0 is the temperature of the TEC and 

the base of the rod, T∞ is room temperature, A is the cross sectional area of the rod, 
P is the perimeter of the rod, L is the length of the rod, and hL is the heat transfer 
coefficient at the tip of the rod.  For a rod with an insulated tip, hL is negligible, and 
we will assume for the moment that our rod has an insulated tip (we will later 
assume that the rod is infinitely long). 
 

 
Figure (2): The Fin Setup 

 
 We are can set up a differential equation for the heat flux along a section of 
the rod of length δx: Conservation of energy requires that the total energy along the 
δx is conserved.  Thus, the difference of the heat flowing (conductively) through the 
rod at (x + δx) and through the rod at x must be equal to the heat lost from the 
surface area of the rod (convectively) between x and (x + δx).  In other words: 
 

(6) Q (conductively)|x + δx – Q (conductively)|x + δQ (convectively)|δx = 0 



 
Using the fact that Q = q A as well as Equations (4) and (5), we can rewrite 

Equation (6), where (P δx) is the surface area of δx. 
 

(7) –kA dT/dx |x + δx + kA dT/dx |x + h (P δx) (T - T∞) = 0 
 

Equation (7) can be simplified further, into the form of Equation (8), where ql = 
√(hP/kA).  Note that ql is a dimensionless variable that is constant in a cylindrical 
rod, assuming that both h and k are constant throughout the rod.  Equations (8) also 
give the boundary conditions for the problem.  
 

(8) d2(T - T∞)/dx2 = ql 2 (T - T∞)1

 
 

(T - T∞)|x=0 = (T0 - T∞) 
d(T - T∞)/dx | x=L = 0 

 
The general solution to the differential equation is (T - T∞) = C1e+(ql) x +C2e-(ql)x.  

Applying the boundary conditions, along with the assumption that the rod is 
infinitely long (L  ∞) gives the solution: 
 

(9) (T - T∞)= (T0 - T∞) e- ql x 
 

By taking data of T(x) along the length of the rod, we are able to solve for the 
experimental value of ql.  We are also able to solve for the theoretical value of ql if 
we know the constants of the setup.  Lastly, using Equation (9b), we are able to 
solve for the rate of heat loss from the fin: 

 
(9b) Q = (h P k A)1/2 (T0 - T∞)  
 

For the second part of this experiment, we studied set the base temperature of 
the rod to oscillate about room temperature.  In other words, we set T0 = A0 + ΔT 
cos(2πt/τ + ε), where ΔT is the amplitude of the oscillation and τ is the period of 
oscillation. 

 
Again, it is necessary to begin by setting up an expression for the rate of heat 

gain in an element of the rod δx.  One again, the rate of heat transferred through the 
rod by conduction is given by –kA ∂T(x, t)/∂x, and the rate of heat lost to 
surrounding through convection is h(T - T∞) (P δx)2

 

.  An equation similar to 
Equation (7) can be written: 

                                                        
1 d2(T )/dx2 = d2(T - T∞)/dx2, because T∞ is not a function of x, so adding a constant 
into the differential term is allowed. 
2 The derivatives from above have been changed into partial derivatives, because 
the temperature is now a function of both x and t, while in the steady-state case 
above, it was only a function of x. 



(10) Ak ∂2T/∂x2 δx – h(T - T∞) (P δx) = Acρ ∂T/∂t ∂x 
 

The main difference between Equations (7) and (10) is the term on the right side 
of Equation (10).  Because the temperature along the rod is no longer constant, 
∂T/∂t is no longer equal to zeros, and there is now a non-zero total rate of heat gain 
in the element ∂x, which is given by Equation (2).  The mass m is now given in terms 
of its density ρ and volume A ∂x (m = ρ A ∂x).  Equation (10) can be rewritten in term 
in a more concise form, where κ and ν are given by Equations (12) and (13): 
 

(11) ∂T/∂t = κ ∂2T/∂x2 – ν (T - T∞) 
 

(12) κ = k / (cρ) 
 

(13) ν = hP/(Acρ) 
 

For simplicity, we will set T = 0 at T∞, and we will look for periodic solutions for 
T(x, t) in the form Equation (14), where ω is the oscillation frequency.  By 
substituting the assumed solution into Equation (11), we are left with the 
differential equation and boundary conditions given in Equation (15)3

 

.  The solution 
to Equation (15) is given in Equation (16). 

(14) T(x, t) = T(x) einωt 
 

(15) ∂2T/∂x2 = [(inω + ν)/κ] T 
 
T(x=0) = T0 
T(x=L) = T∞ = 0 
 

(16) T(x) = T0 exp-[(inω + ν)/κ]x 
 

The solution in Equation (16) can be rewritten as Equation (17), in terms of two 
new variables qn and qn’, as long as -(qn + iqn’)x = -[(inω + ν)/κ]x.  qn and qn’ are 
defined in Equations (18), and they satisfy the requirement above.  Note also, that 
Equation (19) is an expression for the relationship between qn, qn’, and κ (but not ν). 

(17) T(x) = T0 exp[-(qn + iqn’)x] 
 

(18) qn = [ [v + (v2 + n2ω2)1/2] / (2κ) ]1/2 
qn’ = [ [-v + (v2 + n2ω2)1/2] / (2κ) ]1/2 
 

(19) qn qn’ = nω/ (2κ) 
 

                                                        
3 The second boundary condition relies on the assumptions that the rod is infinitely 
long and that room temperature is the “zero point” on the temperature scale. 



Now that we have solved the position dependence T(x), we will look for a 
general solution for T(x, t).  Plugging Equation (16) into Equation (14), taking the 
real part of the solution, and writing T(x, t) as the summation over the index n gives 
the general periodic solution, Equation (20).  Because for our setup the base 
temperature is sinusoidal oscillating with time, meaning T(x=0, t) = A0 + A1 cos(ωt + 
ε1), Equation (20) is only expanded for the first two terms, giving Equation (21).  
Because only q1 and q1’ appear in the solution, q1 and q1’ will simply be referred to 
as q and q’ from here on. 

      ∞ 

(20) T(x, t) = Σ An exp (-qn x) cos(nωt – qn’ x + εn) 
 n = 0 

 
(21) T(x, t) = A0 exp (-ql x) + A1 exp (-q1 x) cos(ωt – q1’x + ε1)  

 
By taking data of T(x, t) for different periods, we are able to solve for q(ω) and 

q’(ω).  Using Equation (19), we can solve for κ, which we can in turn use to solve for 
ν.  Of course, we are also able to solve for the theoretical values of κ and ν if we know 
the constants of our setup, using Equations (12) and (13).  We can then use the 
theoretical values of κ and ν to solve for theoretical values for q(ω) and q’(ω).  
Comparing the theoretical values to our experimental results will indicate the 
accuracy of our experiment.  
 
Procedure  
 After building the setup described above, we needed to first tune our PID (we 
got the best results with k=11, Ti=8, and D=0.5).  We then began to take data.  We 
first set the TEC at a constant temperature, and measured the displacement of the 
five thermistors along the length of the rod.  We waited until the temperature was 
constant at each thermistor, and we recorded the steady-state temperature at each 
of the five x-positions along the rod.   
 

Next, we set the base to a new temperature, and again waited until the 
temperature was steady before recording the data.  We repeated this process for six 
different base temperatures (5°C, 10°C, 15°C, 40°C, 50°C, 60°C).  We then moved the 
five thermistors to new locations, measured their positions, and repeated the 
process.  With the T(x) data for ten positions at six temperatures, we had all the data 
that we needed to calculate ql.4

 
 

 Next, we measured set the base temperature to oscillate with an amplitude of 
5°C about room temperature.  At each of the five thermistors, we recorded data of 

                                                        
4 Actually, we had more data than necessary.  Because we would be fitting the data 
to a model with several parameters, we took more data than was strictly necessary 
for the calculations. 



temperature versus time.  We repeated this process for periods of 100s, 150s, 200s, 
250s, and 300s.  We then had enough data to calculate q and q’.5

 
 

 The constants of our setup, that we used are used in the calculations below 
are as follows: the rod’s diameter = 1.2 cm, h = 10 W/m2K, ρaluminum = 2700 kg/m3, c 
= 900 J/K kg, and k = 220 W/mK. 
 
Experimental Results 
 We began by analyzing out steady-state data in order to solve for ql, the 
dimensionless constant in Equation (9).  As mentioned above, we took data of T(x) 
along the length of the rod, while T0 = T(x=0) remained constant.  In order to find 
our experimental value of ql, we then fit our temperature-versus position data to a 
model in the form of the expected solution for T(x), given by Equation (9).  The 
model that we used is given in Equation (22). 
 

(22) Model_T(x) = T∞ + (T0 - T∞) exp[-ql (x + δ)]  
 

By setting, T∞, (T0 - T∞), ql, and δ as variables, and using ten data points, we were 
able to find the experimental value of ql.  In Equation (22), δ is an added constant to 
increase the accuracy of our fitting, since we do not know exactly where the zero 
point is.  Because we took six sets of data, corresponding to the six constant base 
temperatures, we were able to find six values for ql.  Figure (3) shows the graph of 
our fitted model, at a base temperature of 40°C.  Figure (4) lists the experimental 
values of ql that we found at each different base temperature.  The average value 
was 5.57m-1 ± 0.01m-1, with a standard deviation of 1.39m-1. 
 
 

 Model_T(x) = 23.3°C + 16.2°C e-3.70/m (x + 0.058m) 
 
 
 
 
 
 
 
 

     Figure (3): Model of T(x) vs. x at T0 = 40°C  Figure (4): Data of ql (T0) 
 

We were also able to calculate the “true” value of ql, by plugging the constants of 
our setup into the definition of ql, defined above.  Equation (23) shows that the 
theoretical value of ql is 3.89m-1.  Figure (4) lists the percent error of each 
experimental ql. 
                                                        
5 Again, we had more data than necessary.  Because we would be fitting the data to a 
model with four parameters, we took fives sets of data. 

T0 (°C) ql (1/m) % error 
40 3.70 -5% 
50 4.06 4% 
60 5.74 48% 
15 6.08 56% 
10 6.87 77% 

5 6.96 79% 



 
(23) ql = √(hP/kA) 

     = 3.89 m-1 

 
 It is clear from Figure (2) that the error increases as the difference between 
the temperature and room temperature increase, particularly as the T0 << T∞.  This 
is to be expected, because the approximations that we used in solving for the 
temperature profile of the rod become less and less accurate as the (T0 - T∞) 
increases.  First of all, when the base temperature is very hot or cold, the tip or the 
rod was not exactly at room temperature, and the approximation that T(x=L) = T∞ is 
no longer entirely accurate.  Secondly, the approximation that h is uniform is really 
only a rough approximation that does not hold for very large temperature 
differences.  We expect that the most accurate experimental value for ql is the one 
obtained when T0 is nearest room temperature.  Indeed, the values with the smallest 
error (5%) is ql = 3.70 m-1 ± 0.01m-1 (or 1/ql = 0.270 m), obtained at 40°C. 
 
 To more accurately solve the for the heat profile of the rod, we would have to 
re-fit the data to the solution for a rod of finite length.  However, because we had 
more data than necessary and only some of the data relied on inaccurate 
assumptions, we instead chose to use the value of ql obtained at 40°C. 
 
 Other possible sources of error for this part of the experiment are that the 
data was taken on different days, when the room temperature varied slightly, and 
that we took the data at each temperature in two set (as discussed above, we only 
had five thermistors, so in order to get ten data points, we needed to reposition the 
thermistors).  It is possible that we did not measure the position of the thermistors 
on the exact same scale, which would lead to errors in our data. 
 
 After solving the steady state heat profile in the rod, we analyzed our data for 
the oscillatory case.  We took data of T(x, t) for five different periods.  We expected 
the data to be in the form of Equation (22), so we created a model for T(x, t) based 
on Equation (22).  The models is that we used are given in Equations (24).  When all 
of Equations (24) are combined, they give a solution of exactly the same form as 
Equation (22), as they should6

 
. 

(24) Model_T(x, t) = Ai + Bi cos(ωt +εi) 
 
Model_Ai = (T0 – T∞) exp(-ql xi + δ) 
Model_Bi = ΔT exp (-q1 x) 
Model_εi = ε1 – q1’x 

 
                                                        
6 The only difference between Equations (22) and (24) is that the models include 
fitting constants δ.  Although the same symbol is used in various models, it is not 
constant from model to model.  As discussed above, the only purpose of δ is to get 
rid of error due to us not knowing the zero point of the equations. 



 For each period, we fit our data to Equations (24) to solve for experimental 
values for q(ω) and q’(ω).  As Equations (24) suggest, we fit our data in two steps.  
First, we used Model T(x, t) to find Ai, Bi, ω, and εi for thermistor, for each period.  
We then took the five values that we obtained for Ai, Bi, and εi at each period, and fit 
them to Models Ai, Bi, and εi to find q and q’. 
 

Model_Ai did not give us any new information.  Because we set our TEC to 
oscillate about room temperature, (T0 – T∞) was equal to zero.  However, this was 
not a problem, as we already calculated ql from the steady-state case.   

 
In contrast, Models Bi and εi allowed us to calculate values for q and q’ for 

each period.  For example, Figure (5a) shows the fitted model T(x, t) = Ai + Bi cos(ωt 
+εi) for a period of 200s.  The three, different-colored curves represent data taken at 
three different locations xi.  The curve with the largest amplitude is the nearest to 
the TEC.  Figure (5a) also shows the increasing phase shift along the length of the 
rod.  On the graph of Figure (5a), I have also included the fitted model for the blue 
curve, as an example.  Figures (5b) and (5c) show the fitted curves the models for Bi 
and εi, respectively.  Figures (5b) and (5c) also show the fitted models, which give 
experimental values for q and q’, respectively. 
 
  

             model_T(x1, t) = 2.09°C cos[0.78 – (0.031/s) t] + 22.29°C 
 
 
 
 
 
 
 
 
 
 
 

    Figure (5a): Model T(x, t) at period = 200s  
 
 
 Model_Bi = 4.51°C e-19.3/m (xi + 0.0261m)                  Model_εi = -12.7m-1 xi - 0.605 
 
   
 
 
 
 
 

 
 
Figure(5b): Model Bi at period =200s           Figure(5c): Model εi at period =200s 



 
After fitting all of the data, to our models, we had five experimental values for 

q(ω) and q’(ω)7

Figure (6a): Experimental and Theoretical data for q and q’ 

.  One way to determine the accuracy of our data is by calculating the 
theoretical values for q and q’ for each frequency that we studied, and comparing 
the theoretical values to our experimental ones (Theoretical data is calculated using 
Equations (18)).  This data is shown in Figure (6a), along with the percent error for 
each measured value.  The errors range from 1% to 81%, suggesting that there was 
some error in our experiment.  Possible sources of error are discussed below.   

 
 Figure (6b) summarizes the data in Figure(6a).  It is a plot of comparing the 
experimental and theoretical values of 1/ql, 1/q, and 2π/q’.  All of the data included 
in the graph was taken at around room temperature.  Lines 1, 3, and 6 are the 
experimental data, while lines 2, 4, and 5 are the theory.  
 

 
 

            
 
 
 
 
  
 
 
 

 
 

Figure (6b): Experimental vs. Theoretical Data 
 

Although we did not have time to collect enough data to study the thin 
aluminum rod, I have included Figure (6c), which is theoretical data for a thin rod.  
Comparing figure s (6b) and (6c) shows that as the diameter decreases, the 

                                                        
7 While fitting the data from Period = 150s, I noticed that one data point for a 
particular xi was far away from the rest of the data, so I excluded data from that 
thermistor. 

Period 
(s) 

Measured q 
(m-1) 

Theoretical q 
(m-1) Error q 

Measured q' 
(m-1) 

Theoretical q' 
(m-1) Error q' 

100 26.4 18.8 40% 16.8 18.4 -9% 
150 26.1 15.5 69% 7.4 15.0 -51% 
200 19.3 13.5 43% 12.7 12.9 -1% 
250 18.1 12.1 49% 13.5 11.5 18% 
300 16.4 11.1 47% 18.8 10.4 81% 



wavelength increases, the steady state decay length decreases, and the oscillatory 
decay length decreases slightly.   
 

 
Figure (6c): Theoretical Data 

 
Using our experimental values for q(ω) and q’(ω), we were able to solve for 

the constants κ and ν.  From Equation (19), it is obvious that the κ can be found by 
graphing q q’ (ω) versus ω.  If m is the slope of the resulting graph, then κ = 1/ (2m).  
Figure (7) shows the graph of q q’ (ω) versus ω.  Fitting the line to a slope gives a 
value for κ of 9.20 x 10-5 m2s-1.  When graphing q q’ (ω) versus ω, the data point for 
τ=300s was again thrown away due to its large error. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7): q q’ (m2) vs. ω 
 
 I compared the experimental value of κ to its theoretical values, which is 
calculated by plugging the constants of the setup into Equation (12): 
 

(25) κ = k / (cρ) 
       = 9.05 x 10-5 m2s-1 

 
 The percent error between the measured value for κ, (9.20 ± 0.01) x 10-5 m2s-

1 and the theoretical value, 9.05 x 10-5 m2s-1, is (1.63 ± 0.01)%, which implies that 
the data and analysis are relatively accurate.  



 
 In a similar manner, we can extract the value of ν from a graph of q’ / q.  
When this expression is simplified, κ cancels out of the equation, allowing us to 
extract the value of ν by fitting a model to the graph of q’ / q verses frequency.  The 
model that we used is given in Equation (26), and Figure (8) shows the graph of q’ / 
q verses frequency.  The graph contains both a curve of the measured data and one 
of the theoretical data (“theoretical” data was obtained by solving q’/q(ω) for 
different frequencies, based on the constants of our setup).  Again, I left out the same 
outlier that was not included in the graph of q q’, because adding in the point 
substantially increased the already large error in the measured value for ν. 
 

(26) q’ / q = [- ν + √(ν2 + ω2)] / ω 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure (8): q’/q verses ω 

 
 Fitting the data to the model of Equation (26), gives approximately ν = 7.62 x 
10-3 s-1, but it is clear from the Figure (8) that the model is not the best fit for the 
data., and that the measured data does not match well with the theoretical data. 
 

(27) ν = hP/(Acρ) 
    = 1.37 x 10-3 s-1 

 
We can also calculate the theoretical value of ν by plugging the constants of 

the setup into Equation (27) (originally Equation (15)).  By doing so, we find that ν 
is equal to 1.37 x 10-3 s-1.  Thus, the error in our measured data for ν is significantly 
larger than the error in κ.  Although our experimental value is within the correct 
order of magnitude, the percent error is very large.   

 
There are, however, several possible reasons for the large amount of error.  

One significant source of error is in the assumption that h is a true constant.  In 
reality, however, h can vary greatly from situation to situation, and Newton’s Law of 
Cooling is only an approximation (rather than an absolute physical law).  The value 
of h is dependent on the temperature difference between an object and its 
surroundings.  The fact that the temperature varies along the length of the rod and 



that our data was taken over a period of several weeks (in different room 
temperatures) could have affected our data.  While the assumption that h is a perfect 
constant could have contributed to the error, Newton’s Law of Cooling is a 
reasonable assumption to make for our setup, and the variability of h should not 
create such a large error.  
 
 Another possible source of error is in our LabVIEW code.  At the peak and 
trough of each oscillation, the temperature was not entirely oscillatory.  While this 
alone should not have such a significant affect on our data, it is still an error that 
should be kept in mind. 
 
 Another, more accurate way, to calculate ν is in terms of ql and κ, by using 
Equation (28) in conjunction with the experimental values for ql and κ.    
 

(28) ql = √(ν/κ) 
 

Equation (28) gives ν = (1.26 ± 1.01)  x 10-3 s-1.  There is now only an 8.1% error 
for ν, which suggests that the large error in the ν found by plotting q’/q versus 
frequency is probably due to a problem with the modeling on Mathematica, rather 
than an error in our data or theory. 
 

After finding q, q’, κ, and ν, we were finally able to solve for surface 
conductance h and the thermal conductivity k for aluminum, using Equations (12) 
and (13).  Using the better value for ν, we find that k = 224 Wm-1K-1 ± 1 Wm-1K-1 and 
h = 9.19 Wm-2K-1 ± 0.01 Wm-2K-1.  According to the published data for aluminum, k = 
220 Wm-1K-1 and h = 10 Wm-2K-1, meaning that our percent error for k and h are 
only 1.63% and 8.13%, respectively.  Thus, we can conclude that although we 
encountered errors in some of our data analysis, our data is most likely fairly 
accurate and in agreement with our theory. 

 
Lastly, now that we know h and k, we can easily solve for the steady state 

heat flux from the fin, using Equation (9b) and the constants of our setup.  We will 
solve for the heat flux when T0 = 40°C, because this was our most accurate data 
point.  
 

(29) q = (h P k / A)1/2 (T0 - T∞) 
 

Using Equation (29), we find that the steady state heat flux is equal to 
approximately 10.8 kW m-2.  While there is no published data for the heat flux in our 
particular aluminum rod, we can also solve Equation (29) by using the published, 
rather than experimental, values for h and k.  This gives q = 11.1 kW m-2, with a 
corresponding 2.7 percent error. 
 
Conclusion  
 In conclusion, in our analysis of the heat flow through an aluminum rod, we 
calculated, at around room temperature, that ql = 3.70 m-1; q (κ, ν, ω) = q (9.20 x 10-5 



m2s-1, 1.26 x 10-3 s-1, ω); and q’ (κ, ν, ω) = q’ (9.20 x 10-5 m2s-1, 1.26 x 10-3 s-1, ω).  This 
in turn allowed us to calculate h = 9.19 Wm-2K-1 and k = 224 Wm-1K-1.   
 
 We saw that although some of our models and data had large errors, overall, 
our experimental data was consistent with our theoretical data.  We can therefore 
assume that there were no major errors in our theory or data. 
 
 Lastly, the heat flow through a cylindrical aluminum rod has many 
applications.  One example is the rods in aluminum “pin fins.”  Arranging a fixed 
mass of aluminum as a flat base with many round pins jutting out of it creates a pin 
fin.  Because of the round geometry of the pins (large surface area per volume), their 
omnidirectional arraignment (turbulent air flow between pins), and their 
conductive material (copper of aluminum), pin fins are conducive to cooling.  Pin 
fins are chosen to cool chips, because they are effective heat sinks and can dissipate 
large amounts of heat in small volumes.  With the help of a small fan, a pin fin can 
dissipate up to 185 W in a volume of less than 6.3 in3.  A typical pin fin might have 
cross sectional base area of 1 in.2, a total height of 0.5 in., and by able to cool 2 W 
within a base-temperature rise of 40°C.  



References 
 
Advanced Physics Laboratory, “Thermal Measuring and Modeling” (including all 
links posted on class website). 
http://people.brandeis.edu/~fraden/phys39/Thermal%20Measurement/index.ht
ml  
 
ENC, “Pin Fin Heat Sink: A Sharper Way to Keep Medical Electronics Cool.” 
http://www.ecnmag.com/Articles/2010/03/Pin-Fin-Heat-Sinks/?ckw=ICs&ao=1 
 
Machine Design: by Engineers for Engineers, “Cooling the Pin-Fin Way.” 
http://webcache.googleusercontent.com/search?q=cache:J9HRpwQhGPsJ:machined
esign.com/article/cooling-the-pin-fin-way-
1019+%22pin+fin%22+%2B+dissipate&cd=1&hl=en&ct=clnk&gl=us&client=firefox
-a 
  
Wikipedia, “Heat Transfer,” “The First Law of Thermodynamics,” “Conduction,” 
“Specific Heat Capacity,” “Heat Flux.”  http://www.wikipedia.org/ 

http://people.brandeis.edu/~fraden/phys39/Thermal%20Measurement/index.html�
http://people.brandeis.edu/~fraden/phys39/Thermal%20Measurement/index.html�
http://www.ecnmag.com/Articles/2010/03/Pin-Fin-Heat-Sinks/?ckw=ICs&ao=1�
http://webcache.googleusercontent.com/search?q=cache:J9HRpwQhGPsJ:machinedesign.com/article/cooling-the-pin-fin-way-1019+%22pin+fin%22+%2B+dissipate&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a�
http://webcache.googleusercontent.com/search?q=cache:J9HRpwQhGPsJ:machinedesign.com/article/cooling-the-pin-fin-way-1019+%22pin+fin%22+%2B+dissipate&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a�
http://webcache.googleusercontent.com/search?q=cache:J9HRpwQhGPsJ:machinedesign.com/article/cooling-the-pin-fin-way-1019+%22pin+fin%22+%2B+dissipate&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a�
http://webcache.googleusercontent.com/search?q=cache:J9HRpwQhGPsJ:machinedesign.com/article/cooling-the-pin-fin-way-1019+%22pin+fin%22+%2B+dissipate&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a�
http://www.wikipedia.org/�

